SOAL KEHIDUPAN SEHARI-HARI DARI SPLTV (SISTEM PERSAMAAN LINEAR TIGA VARIABEL)

Nama : Cahya Dwi Utami

Kelas : X-IPS3

Absen: 6


Soal Cerita Sistem Persamaan Linear Tiga Variabel (SPLTV)
1. Sebuah bilangan terdiri atas 3 angka. Jumlah ketiga angkanya sama dengan 16. Jumlah angka pertama dan angka kedua sama dengan angka ketiga dikurangi dua. Nilai bilangan itu sama dengan 21 kali jumlah ketiga angkanya kemudian ditambah dengan 13. Carilah bilangan itu.
Penyelesaian:
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z  2
100x + 10y + z = 21(x + y + z) + 13
Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y  z = 2
79x  11y  20z = 13
Sekarang kita eliminasi variabel y dengan cara berikut.
 Dari persamaan 1 dan 2
x + y + z
=
16

x + y  z
=
2
2z
=
18
z
=
9

 Dari persamaan 1 dan 3
x + y + z
=
16
|× 11|
11x + 11y + 11z
=
176

79x  11y  20z
=
13
|× 1|
79x  11y  20z
=
13
+





90x  9z
=
189
Subtitusikan nilai z = 9 ke persamaan 90x  9z = 189 sehingga diperoleh:
 90x  9z = 189
 90x  9(9) = 189
 90x  81 = 189
 90x = 189 + 81
 90x = 270
 x = 3
Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
 x + y + z = 16
 3 + y + 9 = 16
 y + 12 = 16
 y = 16  12
 y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.

2. Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
 Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z
=
33.000
|× 2|
2x + 6y + 4z
=
66.000

2x + y + z
=
23.500
|× 1|
2x + y + z
=
23.500





5y + 3z
=
42.500
 Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z
=
33.000

x + 2y + 3z
=
36.500
 z
=
3.500
y
=
 3.500

Subtitusikan y = z  3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
 5y + 3z = 42.500
 5(z  3.500) + 3z = 42.500
 5z  17.500 + 3z = 42.500
 8z  17.500 = 42.500
 8z = 42.500 + 17.500
 8z = 42.500 + 17.500
 8z = 60.000
 z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z  3.500 sehingga diperoleh nilai y sebagai berikut.
 y = z  3.500
 y = 7.500  3.500
 y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
 x + 3y + 2z = 33.000
 x + 3(4.000) + 2(7.500) = 33.000
 x + 12.000 + 15.000 = 33.000
 x + 27.000 = 33.000
 x = 33.000  27.000
 x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00.

3. Diketahui tiga bilangan a, b, dan c. Rata-rata dari ketiga bilangan itu sama dengan 16. Bilangan kedua ditambah 20 sama dengan jumlah bilangan lainnya. Bilangan ketiga sama dengan jumlah bilangan yang lain dikurang empat. Carilah bilangan-bilangan itu.
Penyelesaian:
Ketiga bilangan adalah a, b, dan c. Ketentuan soal adalah sebagai berikut:
 Rata-rata ketiga bilangan sama dengan 16 berarti:
(a + b + c)/3 = 16
Apabila kedua ruas kita kalikan 3 maka:
a + b + c = 48

 Bilangan kedua ditambah 20 sama dengan jumlah bilangan lain berarti:
b + 20 = a + c
atau bisa kita tuliskan sebagai berikut.
 b + c = 20

 Bilangan ketiga sama dengan jumlah bilangan lain dikurang 4 berarti:
c = a + b  4
atau bisa kita tuliskan sebagai berikut.
a + b  c = 4
Sampai sini kita peroleh SPLTV sebagai berikut.
a + b + c = 48
 b + c = 20
a + b  c = 4
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
 Eliminasi variabel a pada persamaan 1 dan 2
a + b + c
=
48

 b + c
=
20
2b
=
28
b
=
14

 Eliminasi variabel a pada persamaan 1 dan 3
a + b + c
=
48

a + b  c
=
4
2c
=
44
c
=
22

Subtitusikan nilai b = 14 dan nilai c = 22 ke persamaan a + b  c = 4 sehingga diperoleh nilai a yaitu sebagai berikut.
 a + b  c = 4
 a + 14  22 = 4
 a  8 = 4
 a = 4 + 8
 a = 12
Jadi, ketiga bilangan tersebut berturut-turut adalah 12, 14, dan 22.

5. Suatu bilangan terdiri atas tiga angka. Jumlah ketiga angka itu sama dengan 9. Nilai bilangan itu sama dengan 14 kali jumlah ketiga angkanya. Angka ketiga dikurangi angka kedua dan angka pertama sama dengan 3. Carilah bilangan itu.
Penyelesaian:
Misalkan bilangan yang dimaksud adalah abc, dengan a menempati tempat ratusan, b menempati tempat puluhan dan c menempati tempat satuan. Ketentuan dalam soal adalah sebagai berikut.
 Jumlah ketiga angka sama dengan 9 berarti:
a + b + c = 9

 Nilai bilangan itu sama dengan 14 kali jumlah ketiga angkanya berarti:
100a + 10b + c = 14(a + b + c)
100a + 10b + c = 14a + 14b + 14c
100a  14a + 10b  14b + c  14c = 0
86a  4b  13c = 0

 Angka ketiga dikurangi angka kedua dan angka pertama sama dengan 3 berarti:
 b  a = 3
atau bisa kita tulis sebagai berikut
a + b  c = 3
Dari sini kita peroleh SPLTV sebagai berikut.
a + b + c = 9
86a  4b  13c = 0
a + b  c = 3
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode gabungan yaitu sebagai berikut.
 Eliminasi variabel b pada persamaan 1 dan 2
a + b + c
=
9
|× 4|
4a + 4b + 4c
=
36

86a  4b  13c
=
0
|× 1|
86a  4b  13c
=
0
+





90a  9c
=
36





10a  c
=
4

 Eliminasi variabel b pada persamaan 1 dan 3
a + b + c
=
9

a + b  c
=
3
2c
=
12
c
=
6

Subtitusikan nilai c = 6 ke persamaan 10a  c = 4 sehingga diperoleh nilai a sebagai berikut.
 10a  c = 4
 10a  6 = 4
 10a = 4 + 6
 10a = 10
 a = 1
Terakhir subtitusikan nilai a = 1 dan c = 6 ke persamaan a + b + c = 9 sehingga kita peroleh nilai b sebagai berikut.
 a + b + c = 9
 1 + b + 6 = 9
 b + 7 = 9
 b = 9  7
 b = 3
Karena nilai a = 1, b = 3 dan c = 6 maka bilangan tersebut adalah 126.

5. Bentuk kuadrat px2 + qx + r mempunyai nilai 1 untuk x = 0, mempunyai nilai 6 untuk x = 1 dan mempunyai nilai 2 untuk x = 1. Carilah nilai p, q, dan r.
Penyelesaian:
Fungsi kuadrat dalam x dituliskan sebagai berikut.
f(x) = px2 + qx + r
 Untuk nilai x = 0 maka f(x) = 1 maka:
f(0) = p(0)2 + q(0) + r
1 = r

 Untuk nilai x = 1 maka f(x) = 6 maka:
f(1) = p(1)2 + q(1) + r
6 = p + q + r
Masukkan nilai r = 1 ke persamaan 6 = p + q = r sehingga diperoleh:
 6 = p + q + r
 6 = p + q + 1
 p + q = 5
 p = 5  q

 Untuk nilai x = 1 maka f(x) = 2 maka:
f(0) = p(1)2 + q(1) + r
2 = p  q + r
Subtitusikan persamaan nilai r = 1 dan persamaan p = 5  q ke persamaan 2 = p  q + r sehingga diperoleh:
 2 = p  q + r
 2 = (5  q)  q + 1
 2 = 6  2q
 2q = 6  2
 2q = 4
 q = 2
Terakhir, subtitusikan nilai q = 2 dan nilai r = 1 ke persamaan 2 = p  q + r sehingga kita peroleh nilai p sebagai berikut.
 2 = p  q + r
 2 = p  2 + 1
 2 = p  1
 p = 2 + 1
 p = 3
Jadi, nilai p, q, dan r berturut-turut adalah 3, 2, dan 1.


Daftar Pustaka :
 https://blogmipa-matematika.blogspot.com/2018/06/contoh-soal-cerita-spldv-spltv-splk.html



Komentar

Postingan populer dari blog ini

SISTEM PERTIDAKSAMAAN KUADRAT-LINEAR DAN BEBERAPA CONTOH SOALNYA

FUNGSI: KUADRAT, RASIONAL, IRASIONAL